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On the use of singular yield conditionsg and

associated flow rulesl

—g—

By William Prager2

Abstract. It is well known that the use of Trescats
yield condition frecuently leads to a simpler system of equ-
ations. for the stresses in a plastic so0lid than the use of
the yield condition of Mises.  In most cases where Tresca's
yield condition ﬁaé-been used for this reason, the flow rule
associated with the Mises condition has been retained, how-
éver., Following Koiter* (1), it is shown that further sim-
plification results from the use of the flow rule associated
with the Tresca condition, The reason for this is discussed
in comnection with two examples concerning the finite enlarge-
ment of a circular hole in an infinite sheet of perfectly_
plastic cor work-hardening material. The second example is
probably the first non-trivial case in which a problem of
finite plastic deformation of a work-hardening material has
been treated in closed form by the use of incremental stress-

strain relations,

1 The results rresented in this paper were obtalned in the
course of research sponsored bv the 0ffice of Naval Re-
search (Contract N7onr-35801).

Professor of Applied lMechaniecs, Brown University;
Mem A.5.M.E,

The author is indebted to Professor Koiter for the use
of an advance copy of this paper,
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INTRCDUCTION

The mechanical behavior of a perfectly plastic solid
is defined by the yield condition and the flow rule. The yield
condition specifies the states of stress under which plastic
Slow will occur, Tor each of these states of stress the flow
rule specifies the components of the plastic strain rate to
within an arbitrary common factor. Thils positive factor 1s re=-
quired by the assumption that the solid is inviscid: the state
of stress necessary to cause a certain type of plastic flow does
not depend on the speed of deformation., In the following, a set
of strain rate components that are defined only to within a
common positive factor will be said to specify a "flow mechanism",

For an isotropic perfectly plastic solid, the orien-
tation of the principal axes of stress does not enter into the
yield condition, This condition therefore assumes the form

£(01,9540,5) = 0, o [1]
where the function f must be symmetric in the principal stresses
G13 %oy d3. If the solid retains its isotropy during plastic
flow, the principal axes of the strain rate must coincide with
those of the stress. The flow rule therefore reduces to a
relation between the principal stresses S1s 959 03 and the
principal strain rates e,, €5y 93.

It is convenient to represent the yield condition [1]
geometrically by considering G194 02, and 63 as the rectangzular
coordinates of a point on the "yield surface"., The flow rule

may then be talien to specify a direction at sach point of the
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.yield surface, the three direction cosines being proporticnal

tO el, 82, e30
Mises (2) proposed the flow rule that associates with

each point of the yleld surface the direction of the exterior

normal of this surface at this point:

° . - af . af ° af [2]
e,18.,:€ e wiem  § eaim— g
172773 aol 602 603

In Eq. [2] it has been assumed that the sign of the yleld func-
tion f has been so chosen that the exterior normal of the yield
surface indicates the direction of increasing wvalues of f.

The idea of using the yield function f as thz "plastic
potential™ proved useful for the formulation of flow rules for
crystals and other anisotropic solids, In recent years, the
concept of phe plastic potential has galned added importance
because the %heory of 1limlt analysis 1s based on this relation
between the yield condition and the flow rule (see, for instance,
(3, ¥)),

The flow rule [2] presupposes that there is a uniquely
determined exterior normal at each point of the yield surface,
Not all yield conditions used in the mathematical theory of
plasticlty satisfy this regularity requirement. For example,
the yield surface corresponding to Tresca's condition of con-
stant maximum shearing stress is a regular hexagonal prism. At
a point on an edge of this prism, the exterior normal is not
defired, and there arises the question how the ¢low rule [2]
should be modified at such a sinsular point.

Consider first a point P on the edge formed hy two
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adjacent flat or curved faces of a yield surface. Each of these
faces has a unique exterior normal at P, and each of these nor-
mals may be considered as representing a flow mechanism that is
possible under the state of stress represented by Ps It 1is then
natural to assume that cther possible flow mechanlsms can be
obtained hy combining these two fundamental mechanisms in a
linear fashion and with positive ccefficlents.

In the case of Tresca's yleld condition, for instance,

the faces of the prismatic yield surface lie in the planes
(51-02:_4_-6, 61-632_-_}_-’0, d2n°3:io, [3]

where ¢ is the yleld stress in simple tension. For points on

one of the adjacent faces gy =0y 50 and 0q = 03 = 0 , the flow
rule {2] furnishes

1: - 1:0 4]

n

and

ejiegiey = 1:0: - 1, (9]
respectively. The first flow mechanism represents pure shear
in the ¢4, 65 planej the second mechanism, pure shear in the
o1 03 plane. The point representing the state of simple ten-
siongy = ¢ lies on the co"mon edge of these two faces, Accord-
ing to the flow rule proposed above, the flow mechanisms possible

under this state of simple tension are characterized by
ejiepiey = 1: « X = (1 - M), 6]

wh2re O < A { 1. The three terms on the right-hand side of Eq,
[6] are obtained by multiplying the corresponding terms of Egs.
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(4] and [5] by A and 1 - A, respectively, and adding.

While the type of singular point just discussed 1s the
only one occurring in connectlon with Tresca's yield condition,
other types, such ag a vertex of a polyhedron or a cone, can be

treated in a similar manner.

At first glance it might seem that thls modification
of the flow rule [2] at singular points of the yleld surface
would greatly complicate the mathematical treatment of problems
‘of plastic flow. As was pointed out by Koiter (1), however, the
contrafy is true: a considerable simplification results from the
joint use of Tresca's yield condition and the associated flow
rule. The reason for this wil® be explained in connection with
the following examples which will also demonstrate that the
simplification is by no means restricted to the case of small

plastic deformations considered by Koiter.

TRESCA'S YIELD ZONDITION IN PRO3LEMS OF PLANE STRE:S
In problems of plane stress one of the principal
stresses, say 63, vanishes, and the yield condition can be rep-
resented by a curve or polygon in the 91y 9, plane, If Tresca's
yield condition 1s usel, the yield polygon is formed by the lines

with the equations

01-62=id, dlz_-};d, a :i..d [7]

obtained from [3] by setting 03 = 0, Figure 1 shows this hexagon
which 1s an oblique section of the afore-mentioned hexagonal
prisme The axis of this prism passes through the origin O

and forus equal angles with the positive axss of S1y 95, and 63
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(the latter being normal to the plane of Fig. 1).

Consider a generic point P on one side of the yield
hexagon, for instance on AB. The exterior normal of the three
dimensional yield surface at P is not contained in the plane «dof
the‘figure. The projection of this normal on the plane of the
figure 1s normal to AB, however. Thus, the ratioc eqiep; for th
state of stress represented by P may be obtained as the ratio
between the direction cosines of the normal to the yleld hexagin

at P« Once the ratis eg:ie, is known, the condition of incom-

pressibility .
@) + ey + ey =0 [8.

yields the ratios €qi€ eq

A1l states of stress occurring in the following ex-
amples will turn out to be represented by points on the side
AB of the yield hexagon. NWith 0O <A< 1, the modified flow ruls
then furnishes the followlng information.

(a) State of stress represented by point A:
6. = = @ 6. =0. =0 and ei0ytey = =1: Ns=(1-\). [9]

(b) GState of stress represented by interior point of

0, = 0, = = d, o, =0 and ejieyiey = -1:1:0. [1C]
{c) State of stress represented by point B:
9y = 6y 6] =03 =0 and ejieprey = - N:l:=(lan)s [11]

If the yield stress ¢ remains ccastant during plastic

flow, the solid is called perfectly plastic; if the yield stress
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increases during plastic flow, the solid is called work-hardening.
For the most general type of work-hardening solid the form of the
yield condition could also change during plastic flow, for in-
stance the hexagon of Fig. 1 could gradually change into an
ellipses This would correspgond to a gradual transition from the
yield condition of Tresca to that of {isess This case will not
be considered in this paper, however. It will be assumed that
during plastic flow the yleld hexagon remains centered at the
origin and merely increases in size. In the following the yield
stress of the virgin material will be denoted by o, and it will
be assumed that the rate of hardening 3 is proportional to the
rate D at which mechanical energy is dissipated during plastic

flow: e
6 =aD, , 12]

where a is a constant.
For the three cases considered above D = ¢q€+x + d~€, +
1°1 2°2

o3e3 has the 7ollowing values:

(a) D =~ oey, ri13]
(b) D = (o) = apley = = cey, [14]
(e) D = g€ [15]

FIRST EXAMPLE

=he first example consider the finlte enlargement
of a circular hole in a sheet of a perfectly plastic material,
This problem has been treated by Taylor (5) who used Tresca's

yield condition but the flow rule ascsceiated with Mises! yleld
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condition. The comparison of Taylor's work and the following
analysis reveals the great simplification achieved by the use
of thes appropriate flow rule.

A circular hole of the radius aj in an infinite plate
of the uniform thickness h, is to be enlarged to the radius
a = Lo+ a5 application of a gradually increasing uniform pressure
to the edge of the holes Since finite plastic deformations will
be considered, elastic deformations will be neglected.s The
material at a sufficiently large distance from the hole must then
be treated as rigid because it will not reach the yield limit.
Under these circumstances, radial displacement of the material
near the hole is made possible only by a thickening of the sheet,

In the elastic part of the sheet the radial stress O
and fhe hoop stress Sg are inversely proportional to the square
of the radius r, and og = - ¢, > O, Thus, the state of stress
at the elastic-plastic interface 1s represented by the center of
the segment AB in Fig. 1. Just inside this interface the yileld
condition and flow rule are therefore given by Egs. [10] with
the subseripts 1, 2, 3 standing for r, @, z, respectively. Since
e, = O, there is no thickening of the sheet and radial displace=
ment 1s therefore impossibles The material just inside the

elastlc-plastic interface accordingly remains rigid even though

the stresses . and %3 satisfy the yield condition
O = 0O = = O 4 [16]

The condition of radial equilibrium in this rigid plastic =zone is

3o 0 w o

T e .
-a-r—-f-—-l:—-i‘—-—-—Oo [17]
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From [16], [17] and the boundary condltion 6, = = 05 = « 6,/2

at the elastic plastic interface (r = p,) it follows that

d

- o (& P
T d0(2 + log 19)’

(18]
- ' P
6y = dq(% - log 75)

in the rigid plastic zones The hoop stress 1s therefore decreas-
ing as one progresses from the elastic-plastic interface into the
rigid plastic zone. It follows from the second Ed. [18 ] that

the hoop stress vanishes for
r = o, | V6 =0.606p,. (191

This radius which will occur frequently in the following work
will be denoted by p. The staie of stress at r = p 1is repre=-
sented by the point A in Fig.o 1.

Just inside the circle r = p, the circumferential
straln rate e, mustrvanish on accounf of the rigidity of the

surrounding material. The radial strain rate e, need not vanish,

r
however, The flow mechanism is therefore represe.ited by the
normal to the side AF of the yileld hexagon.

There are now two possibilities regarding the variation
of stress and flow mechanism inside the circle r =p, If the
point representing the state of stress moves from A towards F,
the flow rule requires that eg = Os Thkis means that the radial
velocity v must remain zero inside the circle r = p, because
8y = v/rs The sheet would therefore remain rigid even inside the

circle r =p, If, on the other hand, the point representing the

state of stress remains at A, the greater degree of freedom in
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the choice of the flow mechanism at this singular point allows a
plastic deformation of the sheet inside the circle » =p.

Since the sheet thickness h will not remaln constant
inside the circle r =p, the equatlon of radial equillibrium has
the form

. 8(hey) . hls, = dg)

= 00 [20]
or r

Since o, = = 6,3 G5 = O when the state of stress 1s represented

2 .
by the point A, this equilibrium condition may be written as
follows: )

%(rh) = Q0 21
While it 1s convenient to use the terms "weloclity",
"strain rate", and '"rate of diésipafion of mechanical energy",
it nmust be‘remembered that the plastic solids considered here
are inviscid. Consequently, the flow procoss 1s indenendent of
the time scale, and any varlable that increases monotonically

during the flow process may be used as a measure of “time". In

the following, the radius p will be used in thils manner,

If the radial velocity 1s denoted by v, the radial and
circumferential strain rates are'er = gv/Br, and ey = v/rs The
strain rate in the direction normal to the sheet is (1/h)Dh/dp ,
where Dh/Dp = 3h/6p + v3h/8r denotes the "material" derivative
of he The condition of incompressibllity requires that the sum

of the three strain rates vanish:

L8 ,y8h 8%, x_
hop Thor Tar trT O 2]

Equa Ecuations [21], [22], and the boundary conditions

h=nrh v =0 at r =p (23]

Q2
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define the functions h = h(r,p), v = v(r,p). From Eq. [21] and
the first boundary condition [23] it follows that

h = h, [2k4]

=[O
L 3

With this expression for h, Eq. [22] reduces to a differential

equation for ve The solution satisfying the second boundary

condition [23] 1is
[25]

v=1a«

o=
[ 4

(Since the radius p 1s used as a measure of "time", the "velocity"
must be dimensionless.) From Ec, [25] the strain rates are ob-

tailned as follows

=-§-!=¢l
€ ar p’ e

3 f

=%-%. [26]

r

If the material that at the "time" p is at the radius

r was initially at the radius r,, conservation of mass requires

that Mp
i 2 2
2n\J hr dr = zh (p = 1) [27]
I' .
Substitution of [247 into [27]yields
- 2p - s [28

Equation [24] can therefore be written in the form
2

-

h = 2h, —t—s [29]
p o+ ro

Acgording to [9], the solution just obtalned will be
valid only if ejie, lies between -1:0 and -1l:1, The first of
these bounds 1s attadined at r = p whers eg = 0 by the second Egq,

[26], The other bound is attained at r = p/2 where Eqs, [26]
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furnish e, = 1/p, eg = 1/p. Equation [28] shows that r = p/2
corresponds to r, = O, Thus, the solution remains valid even in
the case where a pin hole i3 enlarged to some finlte radius.
Formally the results obtained above agree with those
furnished by the "simplified analysis" which Taylor (5) attri-
butes to Bethe. Taylor rejects this analysis because the ratics
of the principal strain rates vary while the ratios of the prin-
cipal stresses are-constante As has been shown above, Bethe's
results can be obtained from a consistent theory, and only experi-
ment can decide whether the behavior of a given material agrees

better with the formutlas of Taylor or Bethe.

SECOND EXAMPLE

The second example differs from the first one only in
so far as fhe sheet material is now supposed to be work-hardening
in accordance with Eq. [12], Since no hardening takes place
where the material remains rigid, the stresses outside the cii e
r =p are the same as in the previous example., To keep track of
the progressive hardening of the material inside the circle
r =p, i1t will be necessary to use the Lagrangian coordinate Tq
as one of the independent variables, the other independent varia-
ble being p as before.

Again Og = 0 inside the cirecle r = p, Since Op = = 0
1s no longer constant, however, the condition of equilibrium [21]
must now be replaced by

2 S 2
57 ™09 = 57757,y or.

(I‘hﬂ) = 0, [30]



A11-86 _ -13-

The solution of this eguation that satisfies the boundary con-

ditions h = h , ¢ = o, for r = p 19
rhd = phyd, e [31]

In accordance with Egs, [12] and [13], the rate of

strain hardening is

g
where o - 8Y - % av
T or (or aroj ar,
2

2°c . B 1o.108Lf.
= Tan/ar) wroop - ap € arg | [33]

With the use of this expression for €q, Eqe [32] can be written

as follows:

1
——40 /al ]) = 0. [34]

The circumferential strain rate 1is
e, = % =Ll 3r - gl log T, [35]

and the strain rate in the direction normal to the plane cof the
sheet is
‘ e, =d18h . j% log h. [36]
The condition of incompressibility can therefore be vwritten in
the form
£ r =
ap(hrl %;; [) = 0. [37]
Those solutions of the differential equations [34] and

[37] that are compatible with Ege. [31] and satisfy the boundary

condition ¢ = Oq for r = p are
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p a/(l+a)
¢ o ;;) [38]
and /(L)
r 2 /{1
r=—L_[1+(1+ a)(—g)( e e 1. [39] ;
2 + a o i

As before, the solution represented by Egs. [31],
[38], and [39], 1s valid only as long as the ratlo ep:eg remains
below -1l ZFrom Egqse [33] and [35] it is found that this 1is the
case as long as r > p/2. According to Eq.[39] this means that
the following inecualities must be fulfilled if this solution

is to be valid: 1l+g
2o, (%)2+CI ) [40]
P
- L
2+0
a a a

- To indicate the manner in which 3Bethe's solution for
a perfectly plastic sheet 1s modified by work-hardening, assume
that a = 0.5. For simple tension, thils corresponds to one half
of a percent increase in yield stress for a strain of ons per
cent. Flgure 2 shows the thickness distribution plotted versus
r/p and r/ro. The solid curve corresponds toa = 0.5 and the
dotted curve toa = 0, It is seen that even such a small amount
of gtrain hardening has a significant influence on the thickness
distributions According to Ec. [41] the solution represented

by the solid curve in Fig, 2 is valid for a/a, < 1. 48,

CONCLUSION
It has been shown that the joint use of Tresca'ls yield
condition and the associated flow rule can lead to a considerable
simolification of the mathematical work in problems of plane

plastic stresss The reason for this is the following:
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corresponding to the sides and the vertices of the yield polygon,
one has either a unique flow mechanism and a one parameter family
of principal stress values, or unlgque values of the principal
stresses and & one parameter family of flow mechanismse In
either case considerable simplifications result, and the complete

solution 1s built up of zones in which one or the other type of

simplification pertains,
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